Synaptic scaling requires the GluR2 subunit of the AMPA receptor.
نویسندگان
چکیده
Two functionally distinct forms of synaptic plasticity, Hebbian long-term potentiation (LTP) and homeostatic synaptic scaling, are thought to cooperate to promote information storage and circuit refinement. Both arise through changes in the synaptic accumulation of AMPA receptors (AMPARs), but whether they use similar or distinct receptor-trafficking pathways is unknown. Here, we show that TTX-induced synaptic scaling in cultured visual cortical neurons leads to the insertion of GluR2-containing AMPARs at synapses. Similarly, visual deprivation with monocular TTX injections results in synaptic accumulation of GluR2-containing AMPARs. Unlike chemical LTP, synaptic scaling is blocked by a GluR2 C-tail peptide but not by a GluR1 C-tail peptide. Knockdown of endogenous GluR2 with an short hairpin RNA (shRNA) also blocks synaptic scaling but not chemical LTP. Scaling can be rescued with expression of exogenous GluR2 resistant to the shRNA, but a chimeric GluR2 subunit with the C-terminal domain swapped with the GluR1 C-terminal domain (GluR2/CT1) does not rescue synaptic scaling, indicating that regulatory sequences on the GluR2 C-tail are required for the accumulation of synaptic AMPARs during scaling. Together, our results suggest that synaptic scaling and LTP use different trafficking pathways, making these two forms of plasticity both functionally and molecularly distinct.
منابع مشابه
Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons
AMPA-type glutamate receptors (AMPA-Rs) mediate a majority of excitatory synaptic transmission in the brain. In hippocampus, most AMPA-Rs are hetero-oligomers composed of GluR1/GluR2 or GluR2/GluR3 subunits. Here we show that these AMPA-R forms display different synaptic delivery mechanisms. GluR1/GluR2 receptors are added to synapses during plasticity; this requires interactions between GluR1 ...
متن کاملLong-term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex.
Synaptic long-term depression (LTD) is thought to be important for various brain functions such as learning, memory, and development. Although anterior cingulated cortex (ACC) has been demonstrated to contribute to learning and memory, no studies has been reported about the synaptic mechanisms for cingulate LTD. Here, we used integrative genetic, pharmacological and electrophysiological approac...
متن کاملThe Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity
The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the receptor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however, in certain restricted neuronal populations and under certain physiological or pathological condition...
متن کاملتاثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده AMPA در هیپوکامپ موش صحرایی
Background: Environmental signals have an essential role in the maturation of neural circuits during critical period of brain development. It has been shown that, change in visual signals during critical period of brain development changes structure and function of glutamate receptors in the visual cortex. After processing in visual cortex, part of visual signals goes to the hippocampus and mak...
متن کاملCalcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 20 شماره
صفحات -
تاریخ انتشار 2009